Effects of forcefield and sampling method in all-atom simulations of inherently disordered proteins: Application to conformational preferences of human amylin

نویسندگان

  • Enxi Peng
  • Nevena Todorova
  • Irene Yarovsky
چکیده

Although several computational modelling studies have investigated the conformational behaviour of inherently disordered protein (IDP) amylin, discrepancies in identifying its preferred solution conformations still exist between various forcefields and sampling methods used. Human islet amyloid polypeptide has long been a subject of research, both experimentally and theoretically, as the aggregation of this protein is believed to be the lead cause of type-II diabetes. In this work, we present a systematic forcefield assessment using one of the most advanced non-biased sampling techniques, Replica Exchange with Solute Tempering (REST2), by comparing the secondary structure preferences of monomeric amylin in solution. This study also aims to determine the ability of common forcefields to sample a transition of the protein from a helical membrane bound conformation into the disordered solution state of amylin. Our results demonstrated that the CHARMM22* forcefield showed the best ability to sample multiple conformational states inherent for amylin. It is revealed that REST2 yielded results qualitatively consistent with experiments and in quantitative agreement with other sampling methods, however far more computationally efficiently and without any bias. Therefore, combining an unbiased sampling technique such as REST2 with a vigorous forcefield testing could be suggested as an important step in developing an efficient and robust strategy for simulating IDPs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Macromolecular Crowding on the Conformational Ensembles of Disordered Proteins.

Due to their conformational malleability, intrinsically disordered proteins (IDPs) are particularly susceptible to influences of crowded cellular environments. Here we report a computational study of the effects of macromolecular crowding on the conformational ensemble of a coarse-grained IDP model, by using two approaches. In one, the IDP is simulated along with the crowders; in the other, cro...

متن کامل

The conformational ensembles of α-synuclein and tau: combining single-molecule FRET and simulations.

Intrinsically disordered proteins (IDPs) are increasingly recognized for their important roles in a range of biological contexts, both in normal physiological function and in a variety of devastating human diseases. However, their structural characterization by traditional biophysical methods, for the purposes of understanding their function and dysfunction, has proved challenging. Here, we inv...

متن کامل

Hamiltonian Switch Metropolis Monte Carlo Simulations for Improved Conformational Sampling of Intrinsically Disordered Regions Tethered to Ordered Domains of Proteins

There is growing interest in the topic of intrinsically disordered proteins (IDPs). Atomistic Metropolis Monte Carlo (MMC) simulations based on novel implicit solvation models have yielded useful insights regarding sequence-ensemble relationships for IDPs modeled as autonomous units. However, a majority of naturally occurring IDPs are tethered to ordered domains. Tethering introduces additional...

متن کامل

Molecular simulations of the fluctuating conformational dynamics of intrinsically disordered proteins.

Intrinsically disordered proteins (IDPs) do not possess well-defined three-dimensional structures in solution under physiological conditions. We develop all-atom, united-atom, and coarse-grained Langevin dynamics simulations for the IDP α-synuclein that include geometric, attractive hydrophobic, and screened electrostatic interactions and are calibrated to the inter-residue separations measured...

متن کامل

Molecular Dynamics Simulation of Al Energetic Nano Cluster Impact (ECI) onto the Surface

On the atomic scale, Molecular Dynamic (MD) Simulation of Nano Al cluster impact on Al (100) substrate surface has been carried out for energies of 1-20 eV/atom to understand quantitatively the interaction mechanisms between the cluster atoms and the substrate atoms. The many body Embedded Atom Method (EAM) was used in this simulation. We investigated the maximum substrate temperature Tmax  and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017